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OSCILLATION THEOREMS FOR DIFFERENTIAL EQUATIONS

OF HIGHER ORDERS AND THE SPECTRUM OF THE

CORRESPONDING DIFFERENTIAL OPERATORS

I. M. Glazman

There is a well-known relationship between the oscillation /423*

properties of solutions of the equation

2 [y]---y"+1q(x)y=Xy (XOX-) / (1)

and the spectrum of any self-conjugate operator L, produced by

the operation 12. In view of this relationship, the set of points

of the spectrum, which precede the point X = 0o, will be finite

or infinite depending on whether Equation (1) is non-oscillatory

or oscillatory when X = A0 (i.e., whether each solution of it has

a finite or infinite number of zeros).

This relationship is usually used when studying a spectrum

and when certain properties of the spectrum are established, based

on the non-oscillatory or oscillatory characteristics. A classic

example of this is the proof of G. Weil of the spectrum discrete-

ness characteristic [[1', page 73]. Another proof of this

characteristic was given by the author in [,2a,], using the method

of disintegration introduced in this article.

In this report, the normal investigation method is trans-

formed - namely, the spectrum is studied directly by means of

disintegration - and this leads to conclusions regarding the

*Numbers in the margin indicate pagination of original
foreign text.
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oscillatory nature of the differential equation. It is thus not

necessary to use any asymptotic properties of solutions of a

differential equation.

This approach leads to the natural formulation of problems

regarding the oscillation for differential equations of higher

orders having the form

n

I [y] _ ( 1)n-h [ph (x) y(n--)](n-h) =Xy (po (X) = , O-x<< ) (2)
h -o

or

( I )ny(2n) + q (x) y = 0y (O o x )< ) 

Lemma 1, which is readily established by means of disintegra-

tion, lies at the basis of this discussion.

Lemma 1. Let us assume -L is a certain self-conjugate opera-

tor produced by the operation 1, and let us assume U is the

negative part of the spectrum for the operator-L. In order that

the set U be bounded below and be discrete, it is necessary and

sufficient that for any ¢ > 0 there be a a, for which the square

functional

D. [y] Ii [Y1]ydx + s yl 2 dx (4)

is positive. In order that the set U be finite, it is necessary /424

and sufficient that for a certain a the functional $o[y] be

positive.

In every case, any finite functions of D-, which equal zero

close to a, are assumed to be permissible for the functional

OS[Y] 
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The definition given below of an oscillatory characteristic

(when n = 2, see [3]) is such that the relationship with the

properties of the spectrum is retained, which was mentioned at

the beginning of the article, when changing from Equation (1) to

Equation (2).

Definition. Equation (2) is called oscillatory, if for any

a there is a solution of this equation which has to the right of

a more than one n-multiple zero. In the opposite case, Equation

(2) is called non-oscillatory.

Theorem 1 may be readily established by means of the

disintegration method.

Theorem 1. In order that Equation (2) be non-oscillatory

when X = 0o, it is necessary and sufficient that part of the

spectrum of the operator-L, lying to the left of the point X = X0,

be an infinite set.

It may be shown that when Equation (2) is oscillatory the

first of the n-multiple zeros of the solution given in the defini-

tion may be given arbitrarily.

The negative part of any function f(x) is designated below

by f*(x), so that f*(x) = min {O, f(x)}.

Theorem 2. If for any 6 > 0 the following inequality is

satisfied

p (x) dx <oo ( = , 2,..., (5)
Aha iI- 
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where Mk6 is a set of the values x for which IPI()>, then

Equation (2) is non-oscillatory when A < 0 (i.e., the negative

part of the spectrum of the operator-L is semi-bounded below and

is discrete).

In particular, the result of I. M. Rapoport [4] follows,

which used asymptotic formulas for the solution of Equation (2)

to establish the validity of Theorem 2, under the assumption of

the summability of all coefficients pk(x) on the half-plane x > 0.

The fact that Equation (2) is non-oscillatory for X < 0 also

follows from Theorem 2, when the following inequality is satisfied

0 Ph( ) i' dx < , 
0

where r,> i (k= 1, 2 , ...,n).

In the classical case n = 1, the fact that Equation (1) is

non-oscillatory when X = 0, as is known, is equivalent to the

existence of a solution of the corresponding Riccati equation on

a certain half-plane [a, a). In the general case, the non-

oscillatory nature of Equation (2) when X = 0 is equivalent to

the existence of the solution of a certain nonlinear system of

differential equations in the interval [a, b) for a certain a and

any b > a.

To formulate this system, it is sufficient to use Lemma 1

and the theorem of M. G. Kreyn [5], stipulating that in the case

of a non-negative functional bo[y] the operation Z may be repre-

sented in the form

(6)



where

F [y] = y(n) + u, (X) y(n-i) U....+ un (X)y, ' [y ] = (-- i)ny!n)+
+ (- 1)n-i [U, (X) y] (n-I) +. + un (x) y.

Equating the coefficients for the derivatives y(k) (k = 0, l,

..., 2n - 1) in both parts of Equation (6), we obtain the unknown

system of differential equations with respect to the function /425

Uk(x) (k = 1, 2, ..., n), which may be reduced to one Riccati

equation when n = 1

u 2-- u--q(x)=0. ] (7)

In 1948 N.Adamov [6], studying Equation (7), established*

the curvature of the set of functions q(x), for which this

equation has a solution on a certain half plane [a, a) (i.e., for

which Equation (1) is non-oscillatory). The generalization of

this fact to Equation (2) and the nonlinear system of differential

equations associated with it follows directly from Lemma 1. It

follows from the same lemma that, if Equation (2) is non-oscillatory,

then the equation with larger coefficients is also non-oscillatory.

In the particular case of Equation (2) with constant

coefficients pk(X) = ak the set K
a
of points Q(al, a2, ..., a

n
)

of n-dimensional space of coefficients, which correspond to

Equation (2) which is non-oscillatory when X = 0, is the closure

of the set of points, for which in the sequence of 2n first main

minors of the Hankel matrix llsi+k.'nh- l, where

*Under the assumption that q(x) is periodic.
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kacA SlOCk -. IS2X~-2 + S3kh-3 -' + Sh, IC2h = ah, IO2h+1 = 0 (k = 0, ..., n)

n is alternating.

By replacing the variables

F 1-2n

x= Int, y=x 2 z (8)

the functional 4o[y] corresponding to Equation (2) with constant

coefficients may be reduced to the form

0 [z] = I z 1 idt + S ht
-
2h I zn-

h
) 12 dt,

a' kh1 a,

where the numbers bk are linear functions of the coefficients ak

(9)

from which Theorem 3 follows.

Theorem 3. Let us assume the curved set K
b

is the image of

the set K
a
determined by the transformation of (9), and let us

set

bh = lim inf p, (x),
X- O0

bh.=limsupp,(x) (k= 1,2,...,n).
x -

If Q(b, b'2....,b'n)EKb, then Equation (2) is non-oscillatory

when A = 0. If Q(bb2 .....b,) EKIb,], then Equation (2) is oscillatory

when X = 0.

6
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In particular, when n = 1 the set Kb is the half-plane

b, >--'/ -(Knezer). When n = 2 the set K
b

is determined by the

inequalities: b2> - 9/-- 4 b1sli. 1/ when b,, - /2; b 2 >l/4 (2--bl)2!( 

when ~ bl - 5 /2 '[3]. When n = 3 the set Kb is the portion of the

space containing the first octant and bounded by the surface

b0 = ?cl (u- 2v), 'b2 = ?2 (u -2v, v
2

- 2 uv), b3 ps 3 (u- 2v,! v2 - 2uv, uv 2), ]

where u 2 0, v 2 0.

By iteration of the transformation (8), Theorem 3 assumes

the development in the direction indicated by Hille [7] when

n=l.

In the particular case of a double-term operation, Theorem 4

holds.

Theorem 4. Equation (3) is non-oscillatory, if

q () > - O2X-2n,

and oscillatory if for a certain 6 > 0

q (x) <-(o'n ++ ) x-2n,

where the "Knezer constant" a2 is determined by the formula /426n

(2tn - 1)!
2"

Theorem 5 refines the first part of this theorem.
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Theorem 5. If for any n > 0 the following inequality is
satisfied

x2n- I q'(x) dx < oo,

where M is a set of values of x for which x2 jq (x)l>"--, then

Equation (3) is non-oscillatory when X = 0.

The conditions of Theorem 5, in particular, are satisfied if

for a certain r > 1

cO

0 X2nr- I q
'

(X) r x < .
0

When n = 1, r = 1 the well-known non-oscillatory nature of
the solution of Equation (1) follows when X = 0 [8].

Further oscillatory conditions are obtained by using the

procedure given by the author in [2b].

Theorem 6. If the function q(x) satisfies the condition

* q (x)dx=- °co,

then Equation (3) is oscillatory when X = 0 (when n = 1 under

the assumption that q(x) < 0, see [8]).

Theorem 7. If q(x) < 0 for large x and

ninfp i q(x)Jdx>An
P I
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wheni

Al+= (2n + 1)-'1( (- k)h ;I
i2n -k+I

then Equation (3) is oscillatory when X = 0.

Theorem 8 refines the second part of Theorem 4.

Theorem 8. If q(X)n+ X2 <,0 lfor large x and

lim inf In p x2n-l q (x) -+ ox- 2 d> B2,
p -. CO i

P

when

B2 _ n (4n2 - 1) k 2 1 2 (_-k 2 n -
3 4 r Ea-1 io 2k-i h=o o4n-33 - k [h 0-

then Equation (3) is.oscillatory when X = 0.

We may replace liminf by lim. in the latter theorems.
P - co I Ph-co
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